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Abstract 

Both amorphous and crystalline polymers fall into the larger category of polymeric materials. The exceptional formability 

and low weight of polypropylene (PP) make it an ideal material for a broad variety of applications, from commonplace 

items to machine components. Crystalline polymers, such as PP, exhibit the following multiscale structures. Spherulites are 

formed as a result of the radial growth of lamellae that include both amorphous and crystalline phases. The moulding 

conditions dictate the size and crystallinity of the spherulites that are filled with PP. The deformation of polymeric 

crystalline materials has been the subject of much investigation. A lot is still out in the air, however, and that includes how 

multiscale structures affect the crystalline polymer's material and mechanical characteristics. In materials research and 

engineering, it is desirable to have a computer model that can replicate PP's characteristics using multiscale structures. This 

work investigates the impact of the amorphous and crystalline phases of polypropylene (PP) on macroscopic stress-strain 

behaviour via the use of a polymer plasticity simulation that takes into account a spherulite structure. By adjusting the 

cooling conditions, PP samples with varying crystallinity may be produced. A computer model is fed data on specimen 

crystallinity derived from experimental findings. Our investigation into how spherulite structures impact the material 

characteristics of PP is comprehensive. 
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1. Introduction 

 
Polymeric materials are divided broadly into two categories: amorphous and crystalline polymers. Polypropylene 

(PP) is widely used from daily necessities to machine parts because of its high formability and light weight. PP that is 

classified as a crystalline polymer has the following multiscale structures. Lamellae consisting of amorphous and 

crystalline phases grow radially and spherulites are generated. PP is filled with these spherulites, whose size and 

crystallinity are determined by the molding conditions. Many researchers have studied the deformation of crystalline 

polymeric materials. Various calculations have been performed for glassy polymer (Boyce et al., 1989; Arruda and 

Boyce, 1993a; Wu and Van der Giessen, 1995), since Boyce et al. (1988) presented a three-dimensional model for the 

deformation of glassy polymer. In order to predict the deformation of polymer, Tomita and Tanaka (1995) modified the 

model proposed by Boyce et al. (1988) so as to express nonaffine deformation. Parks and Ahzi (1993) simulated the 

slip deformation of crystalline phase using a crystal plasticity theory proposed by Peirce et al. (1983) for metal 

materials. Kubo et al. (1986) calculated the distribution of stress in a spherulite using a model considering bifurcation 

of the crystalline phase. Nada and Shizawa (2008a, 2008b) proposed a molecular-chain plasticity model considering 

inelasticity based on the local free volume for glassy polymer. Uchida and Tada (2013) proposed a triple-scale model 

for semi-crystalline polymer and simulated the behavior of a composite phase consisting of amorphous and crystalline 

phases. However, many points remain unclear, such as the effects of multiscale structures on the material and 
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mechanical properties of the crystalline polymer. A computational model reproducing the properties of PP based on 

multiscale structures is desired in the materials science and engineering fields. 

In this study, we perform a polymer plasticity simulation considering a spherulite structure consisting of 

amorphous and crystalline phases in order to investigate the effects of amorphous and crystalline phases of PP on 

macroscopic stress-strain behavior. PP samples with different crystallinity are prepared by changing the cooling 

conditions. Information on the crystallinity of spherulite based on experiment results is introduced into the 

computational model. We thoroughly investigate the effect of spherulite structures on the material properties of PP. 

 

2. Methods of measuring and PP properties 

 
2.1 Experiment procedures 

 
In this study, 1 mm-thick PP sheets are prepared using a heating press. PP samples are heated to 453 K for five 

minutes. In order to obtain samples of different structures of spherulites, we apply three types of cooling conditions. PP 

samples are dipped in water at 276 K or 293 K for cooling, or are left to spontaneously cool after being held at 408 K, a 

temperature at which spherulites grow, for an hour. We refer to the samples prepared by these processes as samples (i), 

(ii), and (iii). The size of the spherulites is estimated using a polarization microscope for a flaky sample whose 

thickness is about 6 m for sample (i) or 10 m for samples (ii) and (iii). The mean size of the spherulites dS     is 

determined by length along the major and minor axes of the spherulites. The crystallinity of the samples is measured 

using X-ray diffraction (XRD). The crystallinity C is obtained from the ratio of the integrated intensity for the 

diffraction peaks of crystalline phase to the total integrated intensity. The mechanical properties of these samples are 

measured by tensile tests with a universal testing machine. The shapes of the specimens used in the tensile tests are 

based on the JIS K 7113 2 specimen. We treat the specimens punched from samples (i), (ii), and (iii) as specimens (i), 

(ii) and (iii). 

 
2.2 Experiment results 

 
Figure 1 depicts polarizing micrographs for samples (i), (ii), and (iii). We observe no spherulite structure in sample 

(i) because spherulites did not grow sufficiently due to rapid cooling. The mean size of spherulites for sample (ii) was 
 

 

dS = 33  3 m and that for sample (iii) was 
 

 

dS = 99 11 m . The spherulites in sample (iii), which was kept at 
408K, grew larger than those in sample (ii). Figure 2 depicts the XRD intensity for each sample. All diffraction peaks in 

Fig. 2 correspond to those for -phase of PP (Aboulfaraj et al., 1993). The crystallinity calculated from the integrated 

intensity of Fig. 2 for sample (i) is C = 47  3% , that for sample (ii) is C = 56  5% , and that for sample (iii) is 

C = 60  2% . The crystallinity increases with increasing spherulite size. No spherulite is observed in sample (i), but 

the diffraction peaks exist in the XRD intensity in Fig. 2. We assume that spherulite structures, whose diameters are less 

than 6m, cannot be observed in sample (i) because they overlap. Figure 3 plots the nominal stress versus nominal 

strain of each specimen. Softening after yielding, propagation of necking, and rehardening caused by the orientation of 

molecular chains are observed for all specimens. The mechanical properties of each sample are presented in Table 1. 

 

(a) Sample (i) (b) Sample (ii) (c) Sample (iii) 

Fig. 1 Polarizing micrograph for the PP samples (i), (ii) and (iii) obtained by the different cooling conditions. Spherulite 

structure is observed in (b) and (c). 
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Fig. 2 XRD intensity for PP samples (i), (ii), and (iii). All diffraction peaks correspond to those for -phase of PP. 
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Fig. 3   Nominal stress versus nominal strain curves for specimens (i), (ii), and (iii) obtained by tensile tests. 

Table 1 Mechanical properties of samples (i), (ii), and (iii) 
 

Sample Young’s modulus [MPa] Yield stress [MPa] 

(i) 768  23 26.6  0.7 

(ii) 842  11 29.7  0.6 

(iii) 940  17 31.7  0.5 

 
 

The yield stress and Young’s modulus increase with increasing spherulite size and crystallinity. 

 
3. Multiscale model considering spherulite structure 

 
3.1 Modeling of amorphous phase 

 
In this study, we use molecular-chain network theory (Boyce et al., 1988) to express the deformation of the 

amorphous phase. Molecular-chain network theory assumes that the amorphous phase has a network structure 

consisting of a large number of molecular chains. A constitutive equation for the amorphous phase is represented by 
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where 

∘ 

T~ is the Jaumann rate of Kirchhoff stress for the amorphous phase, 
 

e is the isotropic elastic moduli tensor 

for the amorphous phase, 
p 

DA     is the deformation rate tensor for the amorphous phase, is the plastic part of DA , 
(C e : D)    C e  D   ,    p   is the plastic shear strain rate,   *     

is the effective shear stress, and T * is the deviatoric part 
ij ijkl  kl 

of the effective stress tensor. The plastic shear strain rate is defined as (Boyce et al., 1988) 
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where 

0 A 

 

is  the  reference  shear  strain  rate,   s~  is  the  shear  strength,   T   is  the  absolute  temperature,  and   A   is  a 

numerical parameter. The shear strength considering pressure dependency is given by 

 

 

s~ = s +  p , (3) 

 
 

where s is the athermal shear strength,  is the pressure-dependent coefficient, and p is the pressure given by 

hydrostatic stress. The evolution equation of the athermal shear strength is represented by 
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where h is the hardening ratio and 

stress tensor are expressed by 

s
ss 

is the saturated shear strength. The effective shear stress and the effective 
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T * = T − B , (6) 

 

 

where TA is the Cauchy stress tensor for the amorphous phase and B is the back stress tensor. Principal components 

of the back stress tensor, which is based on an eight-chain model (Arruda and Boyce, 1993b) is given by 
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where bi represents the principal components of the back stress tensor, n is the number of molecular chains per unit 

volume, k   is the Boltzmann constant, N   is the mean number of segments in a molecular chain, p is the principal 
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plastic stretch,  = ν p2 /3  , and L ( x) = coth x −1 / x is the Langevin function. When the number of entangled points 

of molecular chains is constant, the deformation becomes affine. Tomita (2000) proposed a nonaffine eight-chain model 

expressing the change in the number of entangled points. We use the affine eight-chain model in order to simplify the 

calculations. 

 

3.2 Modeling of crystalline phase 

 
Since the crystalline phase consists of folded molecular chains in a uniform array, plastic deformation of the 

crystalline phase is caused by slip deformation on specified planes (Bowden and Young, 1974). In this study, the plastic 

deformation of the crystalline phase is described by crystal plasticity theory (Peirce et al., 1983). A constitutive 

equation of the crystal plasticity theory is given by 

 
 

 
T = C e : D − C e : D p = C e : D − C e   : (s( )   m ( ) )   ( )  

, (8)
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where 

 

 

TC  is the corotational rate of Cauchy stress for the crystalline phase, 

 
e is the isotropic elastic moduli tensor 

for the crystalline phase, DC  is the deformation rate tensor for the crystalline phase, p is the plastic part of DC , 

(s( )  m( ) ) is the Schmid tensor, s( ) is the slip direction of slip system  , m( ) is the normal direction of the 

slip plane, and  ( )   is the slip rate. The slip rate is determined by the slip-rate hardening law by Pan and Rice (1983). 
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Here, 

 

0C     is the reference slip rate, 

 
 ( ) = T : (s( )  m( ) ) 

 
is the resolved shear stress, 

 
g ( ) is the flow stress, and 

m is the strain-rate sensitivity. In this study, there is one slip system and the flow stress is constant. 
 

3.3 Modeling of composite phase 
 

We treat the lamellar structure consisting of the amorphous and crystalline phases in nano-order as a composite 

phase using the law of mixture (Argon, 2013). Generalized 3D laminate theory assumes that the deformation and stress 

of each phase are uniform, and the compatibility of these values is ignored in the interface between the amorphous and 

crystalline phases. When a constant strain condition is assumed for the composite phase, a high stress state is required 

for the crystalline phase that is a harder phase because the strain of the both phase must agree. In this study, we assume 

that the stress for the amorphous and crystalline phases is uniform, and the deformation rate tensor for the composite 

phase is expressed as the averaged stress of the amorphous and crystalline phases. 

 
 

T = TA = TC 

 
D = f A DA + fC DC 

(10) 

 
(11) 

 

 

Here, T is the Cauchy stress for the composite phase, D   is the deformation rate tensor for the composite phase,   f A 

is the volume fraction of the amorphous phase, and 

Equations (1), (8), (10), and  (11) yield 

fC   = 1− f A is the volume fraction of the crystalline phase. 
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where 

 
 

T~   is the corotational rate of Kirchhoff stress for the composite phase,   J   is the Jacobian, and 

 
A−1 

 
means the 

inverse of the fourth-order tensor, i.e.   Aijmn Bmnkl = ik jl ( B = A−1 ). 
 

4. Simulation of PP 

 
4.1 Numerical procedures 

 
The present analysis employs a static explicit FEM. The deformation hysteresis is calculated using a linear 

incremental method at a constant edge-displacement speed. A PP specimen under plane strain is assumed in the current 

simulation. The initial aspect ratio of the specimen is L / W = 3 (Fig. 4(a)). An initial imperfection of 0.5% is applied 

to the edge of the specimen in the region of L /3  from the center of the specimen. Voronoi tessellation is adopted for 

generating spherulites, and Delaunay triangulation is adopted for meshing the FEM to express the inhomogeneity of the 

spherulite shape. There are 33,718 FEM elements, and the strain rate is 0.001s−1. The boundary conditions for 

displacement u and load F are given by 

 

Fx = Fy = 0 (at x = 0, W ) 

uy = 0, Fx 

uy = U , Fx 

= 0 (at y = 0) 

= 0   (at y = L) 

 
. (14) 

 
 

 
 

All elements are considered in the composite phase. In order to simulate a spherulite structure consisting of radially 

growing lamellae, we assume that the slip direction is perpendicular to the radial direction of the spherulite (Fig. 4(b)). 

 

y 
 

 

 
 

Radial direction 

s 
m 

m s 

s 

m 

 

 

 

 

 

 

 

 

(a) Geometry of specimen (b) Crystal orientation in spherulite 

Fig. 4 Geometry of the specimen, shape of spherulite in the specimen, and the initial crystal orientation of the crystalline 

phase. The black dot at the center of the spherulite coincides with a generator of the Voronoi diagram. 
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The center of the spherulite coincides with the generators of the Voronoi diagram. The size of the spherulite is ignored 

because there is no size effect in the plasticity model used here. 

The   material   constants   and   numerical   parameters   are   the   Young’s   modulus   of   the   amorphous   phase 

EA = 500 MPa , the Poisson’s ratio of the amorphous phase  A = 0.33 , the reference slip rate for the amorphous phase 

0 A = 2 1015 s−1 , the initial value of the athermal shear strength s0 = 40 MPa , the saturated shear strength 

sss = 27 MPa , the hardening ratio h = 200 , the absolute temperature T = 296 K , the numerical parameter A = 580 , 

the pressure-dependent coefficient  = 0.08 , the number of molecular chains per unit volume n = 4 1027 , the 

Boltzmann constant k = 1.38 10−29 MJ / K , the mean number of segments in a molecular chain N = 4 , the Young’s 

modulus of the crystalline phase EC = 1000 MPa , the Poisson’s ratio of the crystalline phase C   = 0.33 , the reference 

slip rate for the crystalline phase 0C = 0.001 s−1 , the flow stress g ( ) = 20 MPa , and the strain rate sensitivity 

m = 0.005 . A fluctuation of 10% due to heterogeneity of the material is assumed in the initial value of the athermal 

shear strength. The volume fraction of the crystalline phase fC     is 0.47, 0.56, or 0.60, obtained as described in Section 

2.2. The material parameters on the amorphous phase is based on the literature (Tomita, 2000), whereas the values are 

changed proportionally so that the calculated yield stress and level stress approaches the experiment results. The 

material parameters on the crystalline phase is the usual values in crystal plasticity except the flow stress. The flow 

stress is decided from the comparison of numerical and experiment stress-strain curves. 

 

4.2 Numerical results and discussion 
 

Figure 5 plots the nominal stress versus nominal strain curves when the volume fractions of the crystalline phase 

fC     are 0.47, 0.56, and 0.60, which correspond to those of samples (i), (ii) and (iii), respectively. Table 2 presents the 

mechanical properties obtained by this simulation. The Young’s modulus increases with increasing crystallinity. This 

tendency agrees well with the experiment results presented in Table 1. However, the yield stress for each crystallinity 

fraction is almost the same. The values of the level stress after yielding show the crosscurrents of the experiment result. 

The nominal stress for each crystallinity is equivalent after rehardening. The strain when the rehardening starts is less 

than that of the experiment results. One of the reason for the difference of the strain when the rehardening starts is the 

boundary condition of simulation. Since we assume the plane strain condition in this paper, a sectional area of the 
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Fig. 5 Nominal stress versus nominal strain curves when the volume fractions of the crystalline phase are 0.47, 0.56, and 

0.60. 

Table 2 Mechanical properties determined by Fig. 5 
 

fC Young’s modulus [MPa] Yield stress [MPa] 

0.47 862.7 30.49 

0.56 963.2 30.38 

0.60 1016 30.34 
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(a) UL = 0.05 (b) UL = 0.1 (c) UL = 0.15 (d) UL = 0.2 (e) UL = 0.3 (f) UL = 0.4 (g) UL = 0.5 

0 /s 0.005 /s 

Fig. 6 Distributions of the equivalent plastic strain rate of the composite phase at each elongation percentage when the 

crystallinity is 0.47. 
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(a) Equivalent plastic strain 
of the composite phase 

(b) Equivalent plastic strain 
of the amorphous phase 

(c) Equivalent plastic strain 
of the crystalline phase 

Fig. 7 Distributions of the equivalent plastic strain of the composite, amorphous, and crystalline phases at each elongation 

percentage when the crystallinity is 0.47. 

 

specimen hardly changes. The ratio of the cross section after 50% elongation to the initial cross section is about 0.7, 

whereas the ratio obtained by the experiment is about 0.17 ( fC   = 0.56 ). Moreover, the composite phase is harder than 

the pure amorphous phase because of the crystalline phase. 

Figure 6 depicts the distribution of the equivalent plastic strain rate at each elongation percentage when fC   = 0.47 . 

Distributions for the other crystallinity fractions are almost the same as Fig. 6. Micro-deformation bands are generated 

around the initial imperfections. Necking occurs after yielding, and the plastic deformation regions are propagated in 

the loading direction. When the propagation of necking covers an entire region of the specimen, rehardening begins, 

and the distribution of the equivalent plastic strain rate becomes almost uniform. After 40% elongation, a cross-shaped 

distribution is observed in all spherulites. Figure 7 depicts the distributions of equivalent plastic strain of the composite, 

amorphous, and crystalline phases. The distributions for the composite are similar to those for the amorphous phases 

when the elongation percentage is less than 40%. In contrast, the equivalent plastic strain for the crystalline phase is 
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Stress-strain curve (fC = 0.47) 
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Fig. 8 Averaged equivalent plastic strain of the composite, amorphous and crystalline phases and the nominal stress 

versus nominal strain curves when the crystallinity is 0.47. 
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Fig. 9 Nominal stress versus nominal strain curves obtained by simulation using the constant strain condition for the law 

of mixture. 

almost zero. When the elongation percentage reaches 40%, the slip system is activated in the region where the resolved 

shear stress, which depends on the slip direction and the normal direction of the slip plane, approaches the flow stress 

of the crystalline phase. In this simulation, the Schmid factor is maximum at an angle of 45 degree from the loading 

direction, causing the cross-shaped distribution depicted in Figs. 6 and 7. Figure 8 plots the equivalent plastic strain 

averaged in the specimen with the stress-strain curve when the crystallinity is 0.47. When plastic deformation occurs in 

the crystalline phase, the work-hardening ratio decreases. The same tendency is observed in the experiment curve, 

whereas the timing depends on the crystallinity (Fig. 3). We consider that the difference between the experiment and 

numerical curves is due to the size effect and a structure of the spherulite. The size of spherulite affects the material 

properties, because the crystallinity and the direction of lamellar structure actually depend on the distance from center 

of spherulite due to a growth process of spherulites. Moreover, the boundaries of the spherulites consist of the 

amorphous phase, and the volume fraction of the boundary is determined by the size of the spherulite. However, the 

crystallinity is uniform in a spherulite in order to simplify the modeling of spherulite in this paper investigating the 

effect of mesoscopic crystallinity. Figure 9 plots the nominal stress versus nominal strain curves obtained by simulation 

using the constant strain condition for the law of mixture. Figure 9 predicts the crystallinity dependency on the yield 

stress and the elasticity behavior, whereas the softening after yielding does not occur in a stress-strain curve, and no 

necking appears. The direction of lamellar structure affects the law of mixture for the composite phase. There is quite a 

possibility that combination of the constant strain and the constant stress conditions, which is based on the direction of 

lamellar structure, reproduces the dependency of the stress-strain curve on crystallinity and the propagation of necking, 

simultaneously. 
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5. Conclusions 

 
With the spherulite structure including amorphous and crystalline phases, we conduct a polymer plasticity simulation. 

Explicit experimental data on spherulite crystallinity is fed into a computer model. Furthermore, we contrast the 

experimental findings from tensile testing with the computational results. We look at the PP material qualities and how the 

spherulite structure affects them. The following are our findings.  

A combination of the constitutive equations for the amorphous and crystalline phases, using the law of mixing, expresses 

the composite phase, which is composed of the two phases. 

(2) Under the constant stress condition for the law of mixing, the yield stress in the simulation remains independent of 

crystallinity, despite the fact that Young's modulus is crystallinity dependent.  

 

(3) A drop in the work-hardening ratio and the appearance of a cross-shaped distribution of strain are the results of plastic 

deformation in the crystalline phase.  
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